1、适用条件:[直线过焦点],必有ecosa=(x-1)/(x 1),其中a为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x 1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个):
(1)若f(x)=-f(x k),则t=2k;
(2)若f(x)=m/(x k)(m不为0),则t=2k;
(3)若f(x)=f(x k) f(x-k),则t=6k。注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下:
(1)若在r上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(a b)/2;
(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;
(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4、函数奇偶性:
(1)对于属于r上的奇函数有f(0)=0;
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5、数列爆强定律:1,等差数列中:s奇=na中,例如s13=13a7(13和7为下角标);2等差数列中:s(n)、s(2n)-s(n)、s(3n)-s(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:s(n m)=s(m) q2ms(n)可以迅速求q
6、数列的终极利器,特征根方程。(如果看不懂就算了)。首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1) x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
7、函数详解补充:
(1)复合函数奇偶性:内偶则偶,内奇同外
(2)复合函数单调性:同增异减
(3)重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
8、常用数列bn=n×(22n)求和sn=(n-1)×(22(n 1)) 2记忆方法:前面减去一个1,后面加一个,再整体加一个2
9、适用于标准方程(焦点在x轴)爆强公式:k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10、强烈推荐一个两直线垂直或平行的必杀技:已知直线l1:a1x b1y c1=0直线l2:a2x b2y c2=0若它们垂直:(充要条件)a1a2 b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!
2
11、经典中的经典:相信邻项相消大家都知道。下面看隔项相消:对于sn=1/(1×3) 1/(2×4) 1/(3×5) … 1/[n(n 2)]=1/2[1 1/2-1/(n 1)-1/(n 2)]注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!
12、爆强△面积公式:s=1/2∣mq-np∣其中向量ab=(m,n),向量bc=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!
13、你知道吗?空间立体几何中:以下命题均错:1,空间中不同三点确定一个平面;2,垂直同一直线的两直线平行;3,两组对边分别相等的四边形是平行四边形;4,如果一条直线与平面内无数条直线垂直,则直线垂直平面;5,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;6,有一个面是多边形,其余各面都是三角形的几何体都是棱锥注:对初中生不适用。
14、一个小知识点:所有棱长均相等的棱锥可以是三、四、五棱锥。
15、求f(x)=∣x-1∣ ∣x-2∣ ∣x-3∣ … ∣x-n∣(n为正整数)的最小值。答案为:当n为奇数,最小值为(n2-1)/4,在x=(n 1)/2时取到;当n为偶数时,最小值为n2/4,在x=n/2或n/2 1时取到。
友情 | |
---|---|
招办 |
|
媒体 |
|